Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 15(6): 484-496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37328952

RESUMO

Resolving the heavy metal resistance mechanisms of microbes is crucial for understanding the bioremediation of the ecological environment. In this study, a multiple heavy metal resistance bacterium, Pseudoxanthomonas spadix ZSY-33 was isolated and characterized. The copper resistance mechanism was revealed by analysis of the physiological traits, copper distribution, and genomic and transcriptomic data of strain ZSY-33 cultured with different concentrations of copper. The growth inhibition assay in basic medium showed that the growth of strain ZSY-33 was inhibited in the presence of 0.5 mM copper. The production of extracellular polymeric substances increased at a lower concentration of copper and decreased at a higher concentration of copper. Integrative analysis of genomic and transcriptomic, the copper resistance mechanism in strain ZSY-33 was elucidated. At a lower concentration of copper, the Cus and Cop systems were responsible for the homeostasis of intracellular copper. As the concentration of copper increased, multiple metabolism pathways, including the metabolism of sulfur, amino acids, and pro-energy were cooperated with the Cus and Cop systems to deal with copper stress. These results indicated a flexible copper resistance mechanism in strain ZSY-33, which may acquire from the long-term interaction with the living environment.


Assuntos
Metais Pesados , Xanthomonadaceae , Cobre/farmacologia , Cobre/metabolismo , Xanthomonadaceae/metabolismo
2.
ISME J ; 16(7): 1717-1729, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319020

RESUMO

Interspecific and intraspecific communication systems of microorganisms are involved in the regulation of various stress responses in microbial communities. Although the significance of signaling molecules in the ubiquitous family Xanthomonadaceae has been reported, the role bacterial communications play and their internal mechanisms are largely unknown. Here, we use Lysobacter enzymogenes, a member of Xanthomonadaceae, to identify a novel potassium ion import system, LeKdpXFABC. This import system participates in the indole-mediated interspecies signaling pathway and matters in environmental adaptation. Compared with the previously reported kdpFABC of Escherichia coli, LekdpXFABC contains a novel indispensable gene LekdpX and is directly regulated by the indole-related two-component system QseC/B. QseC autophosphorylation is involved in this process. The operon LekdpXFABC widely exists in Xanthomonadaceae. Moreover, indole promotes antimicrobial product production at the early exponential phase. Further analyses show that indole enhances potassium ion adsorption on the cell surface by upregulating the production of O-antigenic polysaccharides. Finally, we confirm that LeKdpXFABC mediation by indole is subject to the intraspecific signaling molecules DSFs, of which the biosynthesis genes always exist together with LekdpXFABC. Therefore, as a new idea, the signal collaborative strategy of indole and DSFs might ensure the persistent fitness advantage of Xanthomonadaceae in variable environments.


Assuntos
Xanthomonadaceae , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Potássio/metabolismo , Xanthomonadaceae/metabolismo
3.
Cell Microbiol ; 23(1): e13269, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975882

RESUMO

Endogenous carbohydrates released from the intestinal mucus represent a constant source of nutrients to the intestinal microbiota. Mucus-derived carbohydrates can also be used as building blocks in the biosynthesis of bacterial cell wall components, thereby influencing host mucosal immunity. To assess the uptake of endogenous carbohydrates by gut microbes in healthy mice and during intestinal inflammation, we applied azido-monosaccharides that can be tracked on bacterial cell walls after conjugation with fluorophores. In interleukin-10 deficient mice, changes in the gut microbiota were accompanied by decreased carbohydrate hydrolase activities and increased lumenal concentrations of host glycan-derived monosaccharides. Tracking of the monosaccharide N-azidoacetylglucosamine (GlcNAz) in caecum bacteria revealed a preferential incorporation of this carbohydrate by Xanthomonadaceae in healthy mice and by Bacteroidaceae in interleukin-10 deficient mice. These GlcNAz-positive Bacteroidaceae fractions mainly belonged to the species B. acidifaciens and B. vulgatus. Growth of Bacteroides species in the presence of specific monosaccharides changed their stimulatory activity toward CD11c+ dendritic cells. Expression of activation markers and cytokine production was highest after stimulation of dendritic cells with B. vulgatus. The variable incorporation of monosaccharides by related Bacteroides species underline the necessity to investigate intestinal bacteria down to the species level when addressing microbiota-host interactions.


Assuntos
Células Dendríticas/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Animais , Bacteroides/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Interações entre Hospedeiro e Microrganismos , Hidrolases/metabolismo , Imunidade nas Mucosas , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Xanthomonadaceae/metabolismo
4.
Chemosphere ; 225: 73-82, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30861385

RESUMO

A lab-scale partial nitritation SBR was operated at 11 °C for 300 days used for the treatment of high-ammonium wastewater, which was inoculated with activated sludge from Rovaniemi WWTP (located in Polar Arctic Circle) in order to evaluate the influence the temperature on the performance, stability and dynamics of its microbial community. The partial nitritation achieved steady-state long-term operation and granulation process was not affected despite the low temperature and high ammonia concentration. The steady conditions were reached after 60 days of operation where the granular biomass was fully-formed and the 50%-50% of ammonium-nitrite effluent was successful achieved. Inoculation with cold adapted inoculum showed to yield bigger, denser granules with faster start-up without necessity of low temperature adaptation period. Next-generation sequences techniques showed that Trichosporonaceae and Xanthomonadaceae were the dominant OTUs in the mature granules. Our study could be useful in the implementation of full-scale partial nitritation reactors in cold regions such as Nordic countries for treating wastewater with high concentration of ammonium.


Assuntos
Reatores Biológicos/microbiologia , Temperatura Baixa , Nitritos/análise , Esgotos/microbiologia , Purificação da Água/métodos , Compostos de Amônio/análise , Biomassa , Países Escandinavos e Nórdicos , Trichosporon/metabolismo , Xanthomonadaceae/metabolismo
5.
FEMS Microbiol Lett ; 366(2)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30596986

RESUMO

The rhizosphere bacterium ZKB-2 showed strong nematostatic activity against Meloidogyne incognita. Our study aimed to identify the nematostatic metabolites and evaluate the biocontrol efficiency in pot experiments. As the bacterial culture filtrate showed 100% nematostatic activity against M. incognita juveniles in 12 hr, we isolated and identified six compounds following activity guiding. 3-methoxycyclobutane-1, 2-dione showed 58.9% and 72.2% nematostatic activities against juveniles of M. incognita in 12 and 48 hr, with strong LC50 value at 447 µg mL-1. In pot experiments, treatments with the bacterial culture filtrate of strain ZKB-2 showed significant efficacy, especially at doses of 150 mL/pot, which were close to that of avermectin (positive control) at 0.01 g kg-1 soil. The most effective treatment inhibited 85.1% population of juveniles of M. incognita in the roots and 76.9% in the rhizosphere soil after 30 days. Furthermore, the promoting tomato growth also significantly increased in a dose-dependent manner. Our results revealed the potential of strain ZKB-2 to act as a biocontrol agent in the integrated management of root-knot nematodes on tomatoes.


Assuntos
Antinematódeos/farmacologia , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Tylenchoidea/fisiologia , Xanthomonadaceae/química , Animais , Antinematódeos/química , Antinematódeos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Raízes de Plantas/parasitologia , Tylenchoidea/efeitos dos fármacos , Xanthomonadaceae/metabolismo
6.
Sci Rep ; 9(1): 805, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692563

RESUMO

In this study, complex structured soluble lignin wastewater was treated by electro-microbial system (EMS) using different direct current (DC) application modes (CR (continuous ON), IR12h (12 h-ON/12 h-OFF) and IR2h (2 h-ON/2 h-OFF)), and physiological characteristics and microbial communities were investigated. Results showed that CR, IR12h and IR2h had higher lignin removals, which were almost two times that of the control reactor (R0', no current), and IR2h performed best and stably. Furthermore, IR2h exhibited the lowest ohmic resistance (Rs) of electrode biofilms, which could be explained by its higher abundance of electroactive bacteria. In the activated sludge of EMS, the concentration of dehydrogenase activity (DHA) and electronic transport system (ETS) in IR2h were the highest (1.48 and 1.28 times of R0'), which contributed to its high content of adenosine triphosphate (ATP). The viability of activated sludge was not affected by different DC application modes. Phospholipid fatty acids (PLFA) analysis indicated that IR2h had the maximum content of C15:1 anteiso A, C16:0 and C18:0; CR increased the content of C15:0 anteiso and decreased the content of saturated fatty acids. Genus-level results revealed that lignin-degrading bacteria, Pseudoxanthomonas and Mycobacterium, could be enriched in IR2h and CR, respectively.


Assuntos
Reatores Biológicos/microbiologia , Lignina/análise , Esgotos/microbiologia , Águas Residuárias/análise , Biofilmes , Condutividade Elétrica , Técnicas Eletroquímicas , Microbiota , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/metabolismo , Purificação da Água , Xanthomonadaceae/crescimento & desenvolvimento , Xanthomonadaceae/metabolismo
7.
Antonie Van Leeuwenhoek ; 112(5): 723-729, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30506271

RESUMO

A novel Gram-stain negative, rod-shaped and motile bacterial strain, designated strain Seoho-38T, was isolated from a eutrophic lake in South Korea. Polyphasic taxonomic studies were performed to investigate the taxonomic position of the new isolate. The phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain Seoho-38T formed a distinct cluster with Nevskia ramosa Soe1T, Nevskia persephonica G6M-30T, Nevskia soli GR15-1T, Nevskia terrae KIS13-15T and Nevskia aquatilis F2-63T with bootstrap resampling value of 100%. Of those Nevskia strains, the new isolate shows high sequence similarity with N. ramosa Soe1T (98.7%) and N. persephonica G6M-30T (97.2%), and values lower than 96.5% with the other type strains. The new isolate was observed to grow aerobically in 0-1.5% (w/v) NaCl (optimum 0%), at pH 7.0-9.0 (optimum pH 7.0) and temperature 15-36 °C (optimum 20-30 °C) on R2A medium. DNA-DNA relatedness values between strain Seoho-38T and the type strains of reference species in the genus Nevskia were < 24%. The genomic DNA G + C content was determined to be 67.4 mol%. Ubiquinone-8 (Q-8) (95%) and ubiquinone-7 (Q-7) (5%) were identified as the respiratory quinones. The cellular polar lipids were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phosphoaminolipid, two glycolipids, an aminolipid and four unidentified lipids. The major fatty acid components were found to include summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:0ω7c and/or C18:0ω6c), C16:0 and C14:0. Based on the above polyphasic evidence, strain Seoho-38T (= KCTC 52221T = JCM 31888T) represents a new species of the genus Nevskia, for which the name Nevskia lacus sp. nov. is proposed.


Assuntos
Lagos/microbiologia , Xanthomonadaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Eutrofização , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lagos/química , Filogenia , RNA Ribossômico 16S/genética , República da Coreia , Xanthomonadaceae/classificação , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
8.
Bioresour Technol ; 274: 18-24, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30500759

RESUMO

A denitrifying/nitrifying membrane biofilm reactor for simultaneous removal of Hg0 and NO was investigated. Hg0 and NO removal efficiency attained 94.5% and 86%, respectively. The mercury-oxidizing microbial community was significantly shaped by nitrification/denitrification after the supply of gaseous Hg0and NO continuously. Dominant genera Rhodanobacter and Nitrosomonas participated in Hg0 oxidation, nitrification and denitrification simultaneously. Hg0 oxidizing bacteria (Gallionella, Rhodanobacter, Ottowia, Nitrosomonas and etc.), nitrifying bacteria (Nitrosomonas, Rhodanobacter, Diaphorobacte and etc.) and denitrifying bacteria (Nitrosomonas, Rhodanobacter, Castellaniella and etc.) co-existed in the MBfR, as shown by metagenomic sequencing. X-ray photoelectron spectroscopy (XPS) and high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) confirmed the formation of a mercuric species (Hg2+) from mercury bio-oxidation. Mechanism of mercury oxidation can be described as the bacterial oxidation of Hg0 in which Hg0 serves as electron donor, NO serves as electron donor in nitrification and electron acceptor in denitrification, oxygen serves as electron acceptor.


Assuntos
Mercúrio/isolamento & purificação , Microbiota , Biofilmes , Reatores Biológicos/microbiologia , Desnitrificação , Nitrificação , Nitrosomonas/metabolismo , Oxirredução , Xanthomonadaceae/metabolismo
9.
J Hazard Mater ; 364: 264-271, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384235

RESUMO

Anaerobic oxidation of methane (AOM) microorganisms widespread in nature and they are able to utilize methane as electron donor to reduce sulfate, nitrate, nitrite, and high valence metals. However, whether persistent organic contaminants can also be degraded remains unknown. In this study, the organic pollutant methyl orange (MO) was used to address this open question. The initial concentration of MO affected its degradation efficiency and higher concentration (>100 mg/L) caused considerable inhibition. A 13CH4 isotope experiment indicated that methane oxidation was involved in MO degradation, which produced N, N-dimethyl-p-phenylenediamine, and 4-aminobenzenesulfonic acid corresponded stoichiometrically. During the long-term experiment, the maximum degradation rate was 47.91 mg/(L·d). The percentage of Candidatus Methanoperedens and Pseudoxanthomonas significantly increased after 30-d of MO degradation under CH4 conditions; moreover, Candidatus Methanoperedens dominated (46.83%) the microbial community. Candidatus Methanoperedens, either alone or in combination with Pseudoxanthomonas, utilized methane as the sole carbon source to degrade MO via direct interspecies electron transfer or the syntrophy pathway. This study will add to our understanding of the functions and applications of AOM microorganisms.


Assuntos
Compostos Azo/metabolismo , Corantes/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Poluentes Químicos da Água/metabolismo , Xanthomonadaceae/metabolismo , Anaerobiose , Reatores Biológicos , Oxirredução , Eliminação de Resíduos Líquidos/métodos
10.
Toxins (Basel) ; 10(9)2018 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-30205544

RESUMO

Microcystin-LR (MC-LR) is the most toxic and frequently detected monocyclic heptapeptide hepatotoxin produced by cyanobacteria, which poses a great threat to the natural ecosystem and public health. It is very important to seek environment-friendly and cost-efficient methods to remove MC-LR in water. In this study, the MC-degrading capacities of a novel indigenous bacterial community designated as YFMCD4 and the influence of environmental factors including various temperatures, MC concentrations and pH on the MC-degrading activities were investigated utilizing high-performance liquid chromatography (HPLC). In addition, the MC-degrading mechanism of YFMCD4 was also studied using HPLC coupled with a mass spectrometry equipped with electrospray ionization interface (HPLC-ESI-MS). The data showed MC-LR was completely removed at the maximum rate of 0.5 µg/(mL·h) under the optimal condition by YFMCD4. Two pure bacterial strains Alcaligenes faecalis and Stenotrophomonas acidaminiohila were isolated from YFMCD4 degraded MC-LR at a slower rate. The MC-degrading rates of YFMCD4 were significantly affected by different temperatures, pH and MC-LR concentrations. Two intermediates of a tetrapeptide and Adda appeared in the degradation process. These results illustrate that the novel YFMCD4 is one of the highest effective MC-degrading bacterial community, which can completely remove MC-LR and possesses a significant potential to treat water bodies contaminated by MC-LR.


Assuntos
Alcaligenes faecalis/metabolismo , Microcistinas/metabolismo , Poluentes da Água/metabolismo , Xanthomonadaceae/metabolismo , China , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Lagos , Toxinas Marinhas , Espectrometria de Massas por Ionização por Electrospray , Temperatura , Microbiologia da Água , Purificação da Água/métodos
11.
Arch Microbiol ; 200(7): 1017-1023, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29637289

RESUMO

A yellow pigmented, Gram-staining negative, motile and rod-shaped novel bacterial strain, designated MAH-14T was isolated from rhizospheric soil and was characterized using a polyphasic approach. The isolated strain was aerobic, oxidase and catalase were positive, optimum growth temperature and pH were 28-30 °C and 6.5, respectively. The novel strain is able to hydrolyze casein, starch, esculin, gelatin, L-tyrosine, DNA, tween 80, tween 20, L-arginine and 4-nitrophenyl-BD-galactopyranoside. On the basis of 16S rRNA gene sequence analysis, strain MAH-14T belongs to the genus Luteibacter and is most closely related to Luteibacter yeojuensis R2A16-10T (98.5%), Luteibacter anthropi CCUG 25036T (98.4%) and Luteibacter rhizovicinus LJ96T (98.3%). In DNA-DNA hybridization experiments, the DNA relatedness between strain MAH-14T and its closest phylogenetic neighbor was below 45.0%. The predominant respiratory quinone and the DNA G + C content of the novel strain were ubiquinone-8 and 63.5 mol%, respectively. The novel strain MAH-14T is able to produce flexirubin-type pigments. The major cellular fatty acids were C15:0 iso, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 9 (C17:1 iso ω9c and/or C16:0 10-methyl). The DNA-DNA hybridization results and results of the genotypic analysis in combination with chemotaxonomic and physiological data revealed that strain MAH-14T represented a novel species within the genus Luteibacter, for which the name Luteibacter pinisoli, is proposed. The type strain is MAH-14T (= KACC 19298T = CGMCC 1.16227T).


Assuntos
Caseínas/metabolismo , Pinus/microbiologia , Microbiologia do Solo , Xanthomonadaceae/isolamento & purificação , Xanthomonadaceae/metabolismo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Hibridização de Ácido Nucleico , Filogenia , Pinus/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Xanthomonadaceae/classificação , Xanthomonadaceae/genética
12.
Talanta ; 182: 536-543, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29501189

RESUMO

The identification of microorganisms is very important in different fields and alternative methods are necessary for a rapid and simple identification. The use of fatty acids for bacterial identification is gaining attention as phenotypic characteristics are reflective of the genotype and are more easily analyzed. In this work, gas chromatography-vacuum ultraviolet spectroscopy (GC-VUV) was used to determine bacteria fatty acid methyl esters (FAMEs), to identify and discriminate different environmental bacteria based on their fatty acid profile. Microorganisms were grown in agar and their fatty acids extracted, saponified, and esterified before analysis. Unique FAME profiles were obtained for each microorganism mainly composed of branched, cyclopropane, hydroxy, saturated, and unsaturated fatty acid methyl esters. S. maltophilia showed a higher diversity of fatty acids while Bacillus species showed higher complexity in terms of branched-chain FAMEs, with several iso and anteiso forms. 12 different bacteria genera and 15 species were successfully differentiated based on their fatty acid profiles after performing PCA and cluster analysis. Some difficult to differentiate species, such as Bacillus sp., which are genetically very similar, were differentiated with the developed method.


Assuntos
Bactérias/isolamento & purificação , Cromatografia Gasosa/métodos , Ácidos Graxos/isolamento & purificação , Água Subterrânea/microbiologia , Espectroscopia Fotoeletrônica/métodos , Aeromonadaceae/classificação , Aeromonadaceae/isolamento & purificação , Aeromonadaceae/metabolismo , Alcaligenaceae/classificação , Alcaligenaceae/isolamento & purificação , Alcaligenaceae/metabolismo , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Bacillaceae/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Análise por Conglomerados , Comamonadaceae/classificação , Comamonadaceae/isolamento & purificação , Comamonadaceae/metabolismo , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Ésteres , Ácidos Graxos/química , Ácidos Graxos/classificação , Moraxellaceae/classificação , Moraxellaceae/isolamento & purificação , Moraxellaceae/metabolismo , Análise de Componente Principal , Pseudomonadaceae/classificação , Pseudomonadaceae/isolamento & purificação , Pseudomonadaceae/metabolismo , Vácuo , Microbiologia da Água , Xanthomonadaceae/classificação , Xanthomonadaceae/isolamento & purificação , Xanthomonadaceae/metabolismo
13.
PLoS One ; 13(3): e0193718, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29558470

RESUMO

Reductive transformation of toxic arsenic (As) species by As reducing bacteria (AsRB) is a key process in As-biogeochemical-cycling within the subsurface aquifer environment. In this study, we have characterized a Gram-stain-negative, non-spore-forming, rod-shaped As reducing bacterium designated KAs 5-3T, isolated from highly As-contaminated groundwater of India. Strain KAs 5-3T displayed high 16S rRNA gene sequence similarity to the members of the genus Pseudoxanthomonas, with P. mexicana AMX 26BT (99.25% similarity), P. japonensis 12-3T (98.9 0%), P. putridarboris WD-12T (98.02%), and P. indica P15T (97.27%) as closest phylogenetic neighbours. DNA-DNA hybridization study unambiguously indicated that strain KAs 5-3T represented a novel species that was separate from reference strains of P. mexicana AMX 26BT (35.7%), P. japonensis 12-3T (35.5%), P. suwonensis 4M1T (35.5%), P. wuyuanensis XC21-2T (35.0%), P. indica P15T (32.5%), P. daejeonensis TR6-08T (32.0%), and P. putridarboris WD12T (22.1%). The DNA G+C content of strain KAs 5-3T was 64.9 mol %. The predominant fatty acids were C15:0 (37.4%), C16:0 iso (12.6%), C17:1 iso ω9c (10.5%), C15:0 anteiso (9.5%), C11:0 iso 3-OH (8.5%), and C16:1 ω7c/ C16:1 ω6c (7.5%). The major polar lipids were diphosphatidylglycerol, phosphatidyldimethylethanolamine, phosphatidylcholine, and two unknown phospholipids (PL1, PL2). Ubiquinone 8 (Q8) was the predominant respiratory quinone and spermidine was the major polyamine of the strain KAs 5-3T. Cells of strain KAs 5-3T showed the ability to use O2, As5+, NO3-, NO2-, and Fe3+ as terminal electron acceptors as well as to reduce As5+ through the cytosolic process under aerobic incubations. Genes encoding arsenate reductase (arsC) for As-detoxification, nitrate- and nitrite reductase (narG and nirS) for denitrification were detected in the strain KAs 5-3T. Based on taxonomic and physiological data, strain KAs 5-3T is described as a new representative member of the genus Pseudoxanthomonas, for which the name Pseudoxanthomonas arseniciresistens sp. nov. is proposed. The type strain is KAs 5-3T (= LMG 29169T = MTCC 12116T = MCC 3121T).


Assuntos
Arseniatos/metabolismo , Arsênio/análise , Água Subterrânea/microbiologia , Nitratos/metabolismo , Microbiologia da Água , Xanthomonadaceae/classificação , Xanthomonadaceae/metabolismo , Técnicas de Tipagem Bacteriana , Transporte de Elétrons , Loci Gênicos/genética , Índia , Fenótipo , Filogenia , Análise de Sequência de DNA , Xanthomonadaceae/fisiologia
14.
Sci Rep ; 7(1): 16133, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170530

RESUMO

The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia , Xanthomonadaceae/metabolismo , Xanthomonadaceae/patogenicidade , Proteínas de Bactérias/genética , Filogenia , Virulência
15.
Water Res ; 125: 52-61, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28829999

RESUMO

The biodegradation of microcystins (MCs) by bacteria constitutes an important process in freshwater ecosystems to prevent the accumulation of toxins. However, little is known about the diversity and the seasonal dynamics of the bacterial community composition (BCC) involved in the degradation of MCs in nature. To explore these BCC shifts, high-throughput sequencing was used to analyse the 16S rRNA, mcyE and mlrA genes during a year in a freshwater reservoir with a toxic cyanobacterial bloom episode. The analysis of the mcyE and mlrA genes from water samples revealed the coexistence of different MC-producing and MC-degrading genotypes, respectively. The patchy temporal distribution of the mlrA genotypes (from the families Sphingomonadaceae and Xanthomonadaceae) suggests their dissimilar response to environmental conditions and the influence of other factors besides the MCs that may control their presence and relative abundance. During the maximum toxic cyanobacterial biomass and cell lysis, other bacterial taxa that lack mlr genes increased their relative abundance. Among these bacteria, those with a recognized role in the degradation of xenobiotic and other complex organic compounds (e.g., orders Myxococcales, Ellin6067, Spirobacillales and Cytophagales) were the most representative and suggest their possible involvement in the removal of MCs in the environment.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Microcistinas/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Biomassa , Cianobactérias/metabolismo , Ecossistema , Eutrofização , Água Doce/microbiologia , Consórcios Microbianos/genética , RNA Ribossômico 16S/metabolismo , Estações do Ano , Espanha , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
16.
Appl Microbiol Biotechnol ; 100(14): 6131-6139, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27225470

RESUMO

Glucosylglycerols (GGs) are known as compatible solutes accumulated by some bacteria including cyanobacteria as well as higher plants for their adaptations to salt or desiccation stresses. Since being identified in Japanese sake, their physiological effects and potential applications on human health cares have been explored in the following 15 years. Several different synthesis methods have been successively developed for the production of GGs. However, the efficiency of GG synthesis, especially biological synthesis, is still low. With the recent advances in genome sequencing and synthetic biology tools, systematical screening of enzyme candidates and metabolic engineering approaches is necessary for improving GG synthesis efficiency. In this review, we will summarize GG structure information, protective effects on human skin and digestive system as well as industrial enzymes, together with their synthesis by chemical, enzymatic, and biological in vivo approaches in detail, and provide some prospects on improving GG production.


Assuntos
Glucosídeos/biossíntese , Glucosídeos/farmacologia , Microbiologia Industrial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Membrana Celular , Glucosídeos/química , Engenharia Metabólica , Engenharia de Proteínas , Pseudomonas mendocina/metabolismo , Stenotrophomonas maltophilia/metabolismo , Estresse Fisiológico , Synechococcus/genética , Synechococcus/metabolismo , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
17.
Biochimie ; 127: 59-69, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27126073

RESUMO

In this report, we have demonstrated that the poly(U)-dependent poly(Phe) synthesis activity of elongator factor Tu (EF-Tu) from the enacyloxin producing strain Frateuria sp. W-315 is inhibited by the antibiotic similarly to that of Escherichia coli EF-Tu. The inhibitory effect of enacyloxin observed in a purified system was the same as that obtained with an S30 extract from E. coli or Frateuria sp. W-315, respectively, suggesting that antibiotic resistance of enacyloxin producing Frateuria sp. W-315 is not due neither to EF-Tu nor to other components of the translation machinery but to a still unknown mechanism. The EF-Tu gene, as PCR amplified from Frateuria W-315 genomic DNA and sequenced represented an ORF of 1191 nucleotides corresponding to 396 amino acids. This protein is larger than the product of tufA from E. coli by only two amino acid residues. Alignment of the amino acid sequence of EF-Tu from E. coli with those of Frateuria and Ralstonia solanacearum indicates on average 80% identical amino acid residues and 9.7% conservative replacements between EF-Tu Frateuria and EF-Tu E. coli, on one hand, and 97% identity and 1.7% conservative replacement between EF-Tu Frateuria and EF-Tu Ralstonia solanacearum, on the other hand. These strong primary structure similarities between EF-Tu from different origins are consistent with the fact that this factor is essential for the translation process in all kingdoms of life. Comparison of the effects of antibiotics on EF-Tu Frateuria and EF-Tu E. coli revealed that enacyloxin, kirromycin and pulvomycin exert a stronger stimulation of the GDP dissociation rate on EF-Tu Frateuria, while the effects of the antibiotics on the GDP association rate were comparable for the two EF-Tu species. Different mutants of EF-Tu E. coli were constructed with the help of site directed mutagenesis by changing one or several residues of EF-Tu E. coli by the corresponding residues of EF-Tu Frateuria. The single A45K substitution did not modify the intrinsic GTPase activity of EF-Tu E. coli. In contrast, a 2-3 fold stimulation of the intrinsic GTPase activity was observed with the single A42E, F46Y, Q48E and the double F46Y/Q48E substitution. Finally, up to a 7 fold stimulation was observed with the quadruple substitution (mutant A42E/A45K/F46Y/Q48E.


Assuntos
Resistência Microbiana a Medicamentos , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Polienos/metabolismo , Xanthomonadaceae/efeitos dos fármacos , Xanthomonadaceae/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Mutação , Fator Tu de Elongação de Peptídeos/genética , Polienos/farmacologia , Relação Estrutura-Atividade , Xanthomonadaceae/genética
18.
Antonie Van Leeuwenhoek ; 109(6): 785-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27108138

RESUMO

A denitrifying bacterium, designated strain E4-1(T), was isolated from a bioreactor for tannery wastewater treatment, and its taxonomic position was investigated using a polyphasic approach. Strain E4-1(T), a facultative anaerobic bacterium, was observed to grow between 0 and 12 % (w/v) NaCl, between pH 3.0 and 12.0. Cells were found to be oxidase-positive and catalase-negative. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain E4-1(T) forms a distinct lineage with respect to closely related genera in the family Xanthomonadaceae, and is closely related to Chiayiivirga, Aquimonas and Dokdonella, and the levels of 16S rRNA gene sequence similarity with respect to the type species of related genera are less than 93.9 %. The predominant respiratory quinone was determined to be ubiquinone-8 (Q-8) and the major cellular fatty acids were determined to be iso-C15:0, iso-C17:1 ω9c, iso-C11:0 and iso-C11:0 3OH. Based on physiological, biochemical and chemotaxonomic properties together with results of comparative 16S rRNA gene sequence analysis, strain E4-1(T) is considered to represent a novel species in a new genus, for which the name Denitratimonas tolerans gen. nov., sp. nov. is proposed. The type strain is E4-1(T) (=KACC 17565(T) = NCAIM B 025327(T)).


Assuntos
Reatores Biológicos/microbiologia , Águas Residuárias/microbiologia , Xanthomonadaceae/classificação , Xanthomonadaceae/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Desnitrificação , Ácidos Graxos/metabolismo , Fosfolipídeos/metabolismo , Filogenia , Quinonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Ubiquinona/metabolismo , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
19.
Carbohydr Polym ; 134: 761-6, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26428183

RESUMO

A microbial consortium, designated Con R, was established by successive sub-cultivation which can degrade 83% of filter paper after 15 days of incubation over control. Among the 14 bacterial isolates obtained from Con R, only bacterial isolate (R-28) was capable of degrading filter paper. Based on 16S rRNA gene sequence, R-28 was identified as Pseudoxanthomonas sp R-28. After 5 days of incubation, degradation efficiencies of Pseudoxanthomonas sp R-28 on filter paper and pure cellulosic waste were 96% and 95% respectively as compared to control. Pseudoxanthomonas sp R-28 also degraded 60% of non-pretreated rice straw after 7 days as compared to control. The degradation kinetics through a modified logistic model showed high correlation coefficient (R(2)) of 0.965 and 0.665 for cellulosic and rice straw waste degradation respectively. Micro scale structural analysis showed the development of fissures and gaps over time which further supported the degradation potential of Pseudoxanthomonas sp R-28.


Assuntos
Celulose/metabolismo , Lignina/metabolismo , Resíduos , Xanthomonadaceae/metabolismo , Aerobiose , Biodegradação Ambiental , Celulose/química , Cinética , Lignina/química , Xanthomonadaceae/isolamento & purificação
20.
J Basic Microbiol ; 55(9): 1094-103, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25832924

RESUMO

Profenofos is an organophosphate pesticide used extensively in agriculture to control pests. A bacterium capable of degrading profenofos was isolated from pesticide-contaminated soil samples and identified as Pseudoxanthomonas suwonensis strain HNM based on its morphological and biochemical characteristics and phylogenetic analysis of 16S rRNA gene sequences. 4-Bromo-2-chlorophenol was identified as a metabolite of profenofos degradation by HPLC and GC-MS analysis. The organism degraded profenofos by hydrolysis to yield 4-bromo-2-chlorophenol which was further utilized as carbon source for growth. The organism utilized various organophosphate pesticides such as temephos, quinalphos, and chloropyrifos as carbon sources. The optimum conditions for degradation of profenofos by P. suwonensis strain HMN were found to be at pH 7 and 30 °C. We have investigated the rate of degradation of profenofos by the free and immobilized cells of P. suwonensis strain HNM in various matrices such as sodium alginate (SA), sodium alginate-polyvinyl alcohol (SA-PVA), and SA-bentonite clay. The rate of degradation of 3 and 6 mM profenofos by the freely suspended cells were compared with that by immobilized cells in batches and semi-continuous with shaken cultures. The SA-bentonite clay-immobilized cells showed higher rate of degradation of 3 and 6 mM profenofos then freely suspended cells and cells immobilized in SA and SA-PVA. The SA-bentonite clay-immobilized cells of P. suwonensis strain HNM could be reused for more than 32 cycles without losing their degradation capacity. Thus, the immobilized cells are more efficient than freely suspended cells for the degradation of organophosphate pesticide contaminated water.


Assuntos
Organotiofosfatos/metabolismo , Praguicidas/metabolismo , Xanthomonadaceae/metabolismo , Biodegradação Ambiental , Células Imobilizadas/metabolismo , Hidrólise , Organotiofosfatos/química , Praguicidas/química , Xanthomonadaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...